由于在直接转换结构中没有中频处理单元,带内阻断信号的功率将直接传递到混频器和模数转换器(如果信号链路上含有模数转换器)。低噪声的混频器将确保弱信号不会被噪声和阻断信号所淹没。另外,由于混频器具有高的输出摆幅和低的失真,阻断信号既不会过驱动整个系统也不会调制到我们需要的载波信号上。
对于基带超外差接受器,如果在本机锁相环和射频输入之间存在泄漏通路,就一定会产生直流失调。对于和全世界移动通信系统类似的支持跳频的一些射频应用来说,频率的跳变将导致本机锁相环路漏电的改变,并导致整个系统的直流失调的跳变。如果要纠正它,必须在系统中引入一个直流失调的补偿环路。尽管如此,在那些不需要跳频的应用中,本机锁相环的漏电是不变的,因此动态直流失调的补偿意义不大。
在传输端,由于不能有效降低带内噪声和失真,采用直接转换结构的射频发射机必须是由那些动态范围大的元器件构成。在公用移动通信站的相关应用中,由于面积和频道密度要被重点考虑,直接转换结构尤其被看好。因为从公用移动通信站的角度看,带内阻断信号是不存在的(也就是说公用移动通信站自己将处理带内阻断信号),所以,即使直接转换结构缺乏滤除带内阻断信号的功能也是可以接受的。
射频同轴连接器作为无源器件的一个重要组成部分,具有良好的宽带传输特性及多种方便的连接方式,因而被广泛应用于测试仪器、通讯设备等产品当中。由于射频同轴连接器的应用几乎渗透到国民经济的各个部门,其可靠性也越来越引起人们的关心和重视。针对射频同轴连接器失效模式进行了分析。
N型连接器对连接好后,连接器对的外导体接触面(电气和机械基准面)依靠螺纹的拉力相互顶紧,从而实现较小的接触电阻(<5mΩ)。插针内导体的插针部分插入插孔内导体的孔内,并通过插孔壁的弹性保持两个内导体在插孔内导体的口部良好的电接触(接触电阻<3mΩ)。此时插针内导体的台阶面与插孔内导体端面并未顶紧,而是留有<0.1mm的间隙,这个间隙对同轴连接器的电气性能和可靠性有重要影响。N型连接器对的理想连接状态可归纳为以下几点:外导体的良好接触、内导体的良好接触、介质支撑对内导体的良好支撑、螺纹拉力的正确传递。以上连接状态一旦发生改变将导致连接器的失效。下面我们就从这几个要点入手,对连接器的失效原理进行分析,从而找到提高连接器可靠性的正确途径。
射频连接器主要规格;阻抗:几乎所有的射频连接器和电缆被标准化为50Ω的阻抗。例外普遍是75Ω系统通常用于有线电视安装。它也是重要的射频同轴电缆连接器具有相匹配的电缆的特性阻抗。如果不是这样,一个不连续性被引入和损失可能导致。VSWR(电压驻波比):在理想情况下应该是团结,良好的设计和实施能保持VSWR低于1.2在感兴趣的范围内。频率范围:现在大多数射频工作是在1至10GHz的范围,因此,连接器必须在这个区域的低损失。对于10 GHz以上的情况下 - 有很多工作,现在在10至40 GHz范围内的事情的 - 有其中选择较新的连接器。他们是昂贵的,因为是电缆本身。
以上就是关于东莞射频半导体测试设备值得信赖「多图」身不由己歌词全部的内容,关注我们,带您了解更多相关内容。