为了使容器的强度、刚度及稳定性有足够的保证,在设计时采用有限元法对整个设备进行受力分析,根据不同部位的受力情况采用不同的铺层设计。容器采用了三支座以增强三相分离器的整体稳定性。容器壳体机器自动缠绕,内件手糊连接,接管局部加强补筋。玻璃钢的力学性能如下:
1
轴向拉伸强度160~165MPa轴向压缩强度180MPa环向拉伸强度160~250MPa轴向剪切强度40~45MPa
三相分离器罐壁采用了内衬层-静电道出层-结构层-外保护层4层结构。
内衬层:分别由含胶量95%的内表面毡层和含胶量75%的短切毡层组成。内表面毡层起防腐、防渗作用。短切毡层既可起到防腐、防渗作用,又可起到加强表面层作用。同时在树脂中加入适量的导电剂,改善其导电性能。
静电导出层:静电导出层为金属网状结构,均匀的附着于内衬层与结构层之间,由连接金属网的导线穿过结构层将静电导入大地,以保证三相分离器的使用安全。
结构层:结构层是三相分离器的承压层,具有较高的强度和断裂延伸率。设计时采用有限元法对整个设备进行受力分析,根据不同部位的受力情况采用不同的铺层设计。
外保护层:外保护层表面加入适量的防紫外线吸收剂,起抗老化的作用。
三相分离器反应区
UASB的主要部位,包括颗粒污泥区和悬浮污泥区。在反应区内存留大量厌氧污泥,具有良好凝聚和沉淀性能的污泥在池底部形成颗粒污泥层。废水从污泥床底部流入,与颗粒污泥混合接触,污泥中的微生物分解有机物,同时产生微小沼气,气泡不断放出。微小气泡上升过程中,不断合并,逐渐形成较大的气泡。在颗粒污泥层的上部,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层。
三相分离器有机物在厌氧条件下消化降解的过程可简单分为两个阶段,即酸性消化(酸性发酵)阶段和碱性消化(碱性发酵或甲烷消化)阶段。
酸性消化阶段:参与的微生物为酸性腐化菌或产酸细菌。在这一阶段中,含碳有机物被水解成单糖,蛋白质被水解成肽和氨基酸,脂肪被水解成甘油脂肪酸。水解的终产物是包括丁酸、丙酸、乙酸和甲酸在内的有机酸以及醇、氨、CO2、硫化物、氢以及能量,为下一阶段的甲烷消化作准备。酸性腐化细菌对pH值、有机酸及温度的适应性很强,世代短,数分钟到数小时即可繁殖一代,多属于异养型兼性细菌群。
酸性消化阶段:参与的微生物为酸性腐化菌或产酸细菌。在这一阶段中,含碳有机物被水解成单糖,蛋白质被水解成肽和氨基酸,脂肪被水解成甘油脂肪酸。水解的终产物是包括丁酸、丙酸、乙酸和甲酸在内的有机酸以及醇、氨、CO2、硫化物、氢以及能量。酸性腐化细菌对pH值、有机酸及温度的适应性很强,世代短,数分钟到数小时即可繁殖一代,多属于异养型兼性细菌群。