机械臂的作用
机械手臂是一种复杂的机器人设备,由多个关节和执行器组成,能够模仿人类手臂的运动,完成多种工业生产和人类难以完成的任务。机械手臂可以用于自动化组装生产线上。例如,它可以将汽车零部件准确地放置在正确的位置,从而提高生产效率和品质。机械手臂也可以用于自动化包装生产线。例如,它可以将制成的商品放置进包装盒或袋子中,并将它们堆叠在一起以便运输。
机器臂的类型
不确定性主要分为两种主要类型:结构(structured)不确定性和非结构(unstructured)不确定性,非结构不确定性主要是由于测量噪声、外界干扰及计算中的采样时滞和舍入误差等非被控对象自身因素所引起的不确定性。结构不确定性和建模模型本身有关。
①参数不确定性 如负载质量、连杆质量、长度及连杆质心等参数未知或部分已知。
②未建模动态 高频未建模动态,如执行器动态或结构振动等;低频未建模动态,如动/静摩擦力等。
模型不确定性给机械臂轨迹跟踪的实现带来影响,同时部分控制算法受限于一定的不确定性。应用于机械臂控制系统的设计方法主要包括PID控制、自适应控制和鲁棒控制等,然而由于它们自身所存在的缺陷,促使其与神经网络、模糊控制等算法相结合,一些新的控制方法也在涌现,很多算法是彼此结合在一起的。
机器臂的基本原理
机械结构原理:机械臂的机械结构原理是基础,它是机械臂能够进行自由度运动的基础。机械臂通常由多个关节、连杆等组成,各个部分通过电机、减速器等驱动系统配合运动,实现机械臂的自由度运动。
控制原理:机械臂的控制原理是机械臂能够准确的运动和执行任务的关键。机械臂的控制涉及到运动控制、力控制、姿态控制、路径规划等多个方面,需要通过控制器实现。控制器通过传感器检测机械臂的状态和环境信息,计算出机械臂的运动轨迹和控制指令,使机械臂能够准确的执行任务。
传感器原理:机械臂的传感器原理是机械臂能够感知外部环境和物体的基础。机械臂通常配备多种传感器,如视觉传感器、力传感器、位置传感器等。这些传感器可以检测机械臂的位置、速度、力度等物理量,从而提供给控制器反馈信息,使机械臂能够自适应环境和任务。
机器臂的承受能力
承载能力是指机器人在工作范围内的任何位姿上所能承受的很大负载,一般用质量、力矩或惯性矩表示。承载能力还与机械臂运行的速度和加速度的大小、方向有关。为了安全起见,一般规定高速运行时所能抓取的很大重量(通常包括末端操作器的质量)作为承载能力的指标。
机械臂有效负载的大小除受到驱动器功率的限制外,还受到杆件材料极限应力的限制,因而它又和环境条件(如地心引力)、运动参数(如运动速度、加速度)。